On a spectral identity of Quantum Statistical Mechanics
نویسندگان
چکیده
منابع مشابه
Quantum Mechanics_ Quantum statistical mechanics
Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possiblequantum states) is described by a density operatorS, which is a nonnegative, self-adjoint, trace-classoperator of trace 1 on the Hilbert space Hdescribing the quantum system. This can be shown under various mathematical ...
متن کاملStatistical Quantum Mechanics
3 Thermodynamic State Variables and State Equations 8 3.1 State Variables and Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.1 Exhaustive set of state variables? . . . . . . . . . . . . . . . . . . . . 8 3.1.2 Are state variables de ned only in equilibrium? . . . . . . . . . . . . 11 3.1.3 Concept of local equilibrium . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.4 C...
متن کاملOn Quantum Statistical Mechanics of a Schwarzschild Black Hole
Quantum theory of geometry, developed recently in the framework of nonperturbative quantum gravity, is used in an attempt to explain thermodynamics of Schwarzschild black holes on the basis of a microscopical (quantum) description of the system. We work with the formulation of thermodynamics in which the black hole is enclosed by a spherical surface B and a macroscopic state of the system is sp...
متن کاملStatistical Geometry in Quantum Mechanics
A statistical model M is a family of probability distributions, characterised by a set of continuous parameters known as the parameter space. This possesses natural geometrical properties induced by the embedding of the family of probability distributions into the space of all square-integrable functions. More precisely, by consideration of the square-root density function we can regard M as a ...
متن کاملDoes quantum chaos explain quantum statistical mechanics?
If a many-body quantum system approaches thermal equilibrium from a generic initial state, then the expectation value 〈ψ(t)|Ai|ψ(t)〉, where |ψ(t)〉 is the system’s state vector and Ai is an experimentally accessible observable, should approach a constant value which is independent of the initial state, and equal to a thermal average of Ai at an appropriate temperature. We show that this is the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2009
ISSN: 0019-3577
DOI: 10.1016/s0019-3577(09)80020-7